Intervention with Pharamacologic Magic (STOP-IC Study)

> Hiroyoshi Yokoi Kokura Memorial Hospital Kitakyushyu, Japan

Disclosure Statement of Financial Interest

 I, (Hiroyoshi Yokoi) DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation

Mid-Term Clinical Outcome and Predictors of Vessel Patency after Femoropopliteal stenting with Self-Expanding Nitinol Stent (n=639)

Soga.Y. et al : J Vasc Surg.,52:608-15,2010

Multivariate Analysis of predictors for Stent Restenosis in patients with SFA disease

Variables	HR	95% CI	P value
Female	1.82	1.33 – 2.49	0.0002
ABI<0.6	1.71	1.25 – 2.31	0.0007
TASC-II C/D	1.98	1.38 – 2.85	0.0002
Stent Fracture	2.20	1.41 – 3.43	0.0005
Cilostazol (-)	1.87	1.37 – 2.54	<0.0001

Soga.Y. et al : J Vasc Surg.,52:608-15,2010

Multifaceted Effects of Cilostazol

Background

Recently, cilostazol therapy after EVT for FP lesions has been shown to improve clinical outcome. However, it is unknown whether it reduces angiographic restenosis after EVT.

STOP

IC

J Vasc Surg. 2008;48:144-9.

J Am Coll Cardiol. 2009;53:48-53.

<u>Sufficient Treatment Of</u> <u>Peripheral Intervention by Cilostazol</u>

STO

Kokura Memorial Hospital Department of Cardiology Hiroyoshi Yokoi

Kansai Rosai Hospital Cardiovascular Center

Osamu lida Osaka University Advanced Cardiovascular Therapeutics Shinsuke Nanto and STOP-IC Invetigators

To investigate whether cilostazol reduces the binary restenosis after EVT for *de novo* FP lesions by angiographic follow-up

Methods

Study Design: Prospective, multicenter (17 cardiovascular centers), open-label trial

Methods

Inclusion criteria

- **D** Written informed consent.
- Symptomatic leg ischemia defined as Rutherford classification 2-4 patients with femoro-Popliteal *de novo* lesion presenting > 50% stenosis Available for angiographic follow-up at 12 months

Exclusion criteria

- □ life expectancy of less than 2 year
- **D** Symptom due to acute onset leg ischemia.

Methods

Primary endpoint

12 months angiographic restenosis rate
(Defined as %DS>50%) evaluated by independent Core Labolatory

Secondary endpoint

- 12 months restenosis rate assessed by angiographic or duplex (PSVR<2.5)
- Target lesion revascularization (TLR)
- □ Incidence of death, major amputation and surgical conversion

Baseline Patient Characteristics

	Cilostazol group N=93	Non-Cilostazol group N=97	All N=190	P value
Age-yrs	72±9	73±8	72±9	0.5
Male gender-no. (%)	69% (64)	68.0% (66)	68% (130)	0.9
Body mass index	22 ± 3	22 ± 3	22 ± 3	0.8
Hypertension-no. (%)	81% (75)	81% (78)	81% (153)	0.9
Dislipidemia-no. (%)	43% (40)	51% (49)	47% (89)	0.3
Statin treatment-no. (%)	29% (27)	40% (39)	35% (66)	0.1
Diabetes mellitus-no. (%)	57% (53)	55% (53)	56% (106)	0.7
Glycosylated hemoglobin at baseline-%	6.4 ± 1.7	6.2 ± 1.1	6.3 ± 1.4	0.4
History of Smoking-no. (%)	45% (42)	48% (46)	47% (88)	0.7
End stage renal disease on dialysis-no (%)	16% (15)	16% (15)	16% (30)	09
Coronary artery disease-no (%)	38% (35)	40% (38)	39% (73)	0.8
Cerebrovascular disease-no. (%)	24% (22)	20% (19)	22% (41)	0.5
	,. (,	2070 (20)	==/0 (12)	0.0
Rutherford classification-no. (%)				
2	24% (22)	29% (28)	27% (50)	0.4
3	67% (62)	58% (55)	63% (117)	
4	9% (8)	13% (12)	11% (20)	
Absolute claudication distance (ACD)	98 (50 - 133)	76 (50 - 101)	80 (50 - 115)	0.5
Baseline ankle brachial index ABPI	0.72 ± 0.16	0.66 ± 0.13	0.69 ± 0.15	0.008

Baseline Lesion Characteristics

	Cilostazol group N=93	Non-Cilostazol group N=97	All N=190	P value
TASC II classification-no. (%)				1.0
A	37% (34)	34% (32)	36% (66)	
В	21% (19)	22% (21)	21% (40)	
С	25% (23)	27% (25)	26% (48)	
D	17% (16)	17% (16)	17% (32)	
Length of target lesion-mm	130±89	124±82	127±86	0.8
Reference vessel diameter (mm)				
Proximal	5.4 ± 1.4	5.3 ± 1.3	5.3 ± 1.4	0.9
Distal	4.9 ± 1.0	5.0 ± 1.0	4.9 ± 1.0	0.5
Degree of stenosis pre intervention(%)	82 ± 21	81 ± 20	81 ± 20	1.0
Occlusion-no of patients (%)	39% (37)	35% (33)	37% (70)	0.6
MLD pre intervention-mm	1.4	1.6	1.5	0.8
ALD pre intervention-mm	1.4	1.7	1.6	0.6
Plaque area before intervention-mm ²	63	81	70.3	0.3
Lesion calcification-%	47% (25)	51% (22)	49% (47)	0.8
Number of below the knee run-off (%)	、	, , , , , , , , , , , , , , , , , , ,		0.4
0	4% (4)	1% (1)	3% (5)	
1	31% (28)	35% (32)	33% (60)	
2	40% (36)	35% (32)	37% (68)	
3	24% (22)	29% (27)	27% (49)	

MLD: Minimum lumen diameter, ALD: Average lumen diameter

Baseline Procedural Characteristics

	Cilostazol group N=93	Non-Cilostazol group N=97	All N=190	P value
Stent implantation-no. (%)	89% (82)	90% (85)	89% (167)	0.9
Stent length (mm)	167±94	154土86	161±90	0.8
Number of stent implantation	45% (37)	41% (35)	43% (72)	0.2
2 3 Diameter of post dilation balloon-mm	24% (20) 31% (25)	37% (31) 22% (19)	31% (51) 26% (44)	0.1
4	18% (16)	11% (10)	14% (26)	
5	46% (42)	60% (56)	53% (98)	
6	36% (33)	29% (27)	33% (60)	
Degree of stenosis post intervention-%	20	22	21	1.0
MLD post intervention-mm	3.8	3.7	3.7	0.7
ALD post intervention-mm	11.4	11.3	11.4	0.7
SD /proximal RD ratio	1.4	1.3	1.3	0.7
SD /distal RD ratio	1.5	1.4	1.5	0.6
Procedure related complication-no. (%)	2.2% (2)	3.1% (3)	2.7% (5)	1.0
Distal embolization-no. (%)	1.6% (1)	1.6% (1)	1.6% (2)	1.0
Puncture site complication-no. (%)	1.1% (1)	2.1% (2)	1.6% (3)	1.0

MLD: Minimum lumen diameter, ALD: Average lumen diameter Stent: SMART stent, SD: Stent diameter, RD: Reference diameter

12-month Angiography Follow-up

 \mathbf{V}

Representative case -Follow up angiogram@12 months-

Lesion background: lesion length > 15cm, CTO, DM (+) EVT procedure: S.M.A.R.T. stent 7.0*100mm*2

Cilostazol (-)

Cilostazol (+)

Results

Primary Endpoint (12 months angiographic restenosis)

12-month Angiography Follow-up

Results

Secondary endpoint (12 months restenosis assessed by angiography or duplex, *intention to treat analysis*)

Results

Secondary endpoint (12 months restenosis assessed by angiography or duplex, *per protocol analysis*)

12 months FU Clinical Outcome Data

	Cilostazol group N=93	Non-Cilostazol group N=97	P value
TLR	17%	37%	0.004
Surgical bypass conversion	0%	0%	-
Stent fracture	17%	16%	0.90
Amputation	2.2% (2)	3.1% (3)	1.0
Death	4.6%	4.4%	1.0

Results

Subgroup analysis for efficacy of cilostazol on 12 months angiographic restenosis

Summary

- There were no differences between the 2 groups in patient, lower limb and lesion characteristics, except for ABI before EVT.
- The number of stents implanted was similar between the two groups. The occurrence of stent fracture, as observed at follow-up, was also similar.
- 12-month angiographic restenosis rates were significantly lower in the cilostazol group.
- Target lesion revascularization was also significantly lower in the cilostazol group.

Conclusion

Cilostazol reduced angiographic restenosis rates after EVT for FP lesions.